Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport.
نویسندگان
چکیده
Niacin (nicotinic acid) is the most potent clinically used agent for increasing plasma HDL and apolipoprotein (apo) A-I. The mechanism by which niacin increases apoA-I is not clearly understood. We have examined the effect of niacin on the hepatic production and removal of apoA-I using Hep G2 cells as an in vitro model. Incubation of Hep G2 cells with niacin resulted in increased accumulation of apoA-I in the medium in a dose-dependent manner. Incorporation of [3H]leucine and [35S]methionine into apoA-I and apoA-I mRNA expression was unchanged by niacin, suggesting that it did not affect apoA-I de novo synthesis. Uptake of radiolabeled HDL protein and HDL apoA-I by Hep G2 cells was significantly reduced to as much as 82.9 +/- 2.2% (P = .04) and 84.2 +/- 2.8% (P = .02), respectively, of the baseline with increasing concentrations of niacin (0 to 3.0 mmol/L). Specific 125I-HDL protein uptake measured with a 50-fold excess of unlabeled HDL was reduced to as much as 78.3 +/- 4.8% (P = .005) in niacin-treated cells. The uptake of labeled cholesterol esters in HDL was unaffected by niacin. Niacin also effected a similar decrease in HDL protein uptake, but not cholesterol esters, from apoA-I-containing HDL particles isolated by immunoaffinity. The conditioned medium obtained from Hep G2 cells incubated with niacin significantly (P = .002) increased cholesterol efflux from cultured human fibroblasts. These data indicate a novel mechanism whereby niacin selectively decreases hepatic removal of HDL apoA-I but not cholesterol esters, thereby increasing the capacity of retained apoA-I to augment reverse cholesterol transport.
منابع مشابه
Niacin, but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol.
Evidence indicates that the high density lipoprotein (HDL) subfraction containing apolipoprotein A-I without apolipoprotein AII (LP-AI) is more antiatherogenic than HDL particles containing apolipoprotein A-I and apolipoprotein A-II (LP-AI+AII). This study examined the effect of extended-release niacin (niacin-ER) and gemfibrozil on LP-AI and LP-AI+AII particles in patients with low levels of H...
متن کاملNicotinic Acid Accelerates HDL Cholesteryl Ester Turnover in Obese Insulin-Resistant Dogs
AIM Nicotinic acid (NA) treatment decreases plasma triglycerides and increases HDL cholesterol, but the mechanisms involved in these change are not fully understood. A reduction in cholesteryl ester transfer protein (CETP) activity has been advanced to explain most lipid-modulating effects of NA. However, due to the central role of CETP in reverse cholesterol transport in humans, other effects ...
متن کاملIncrease in plasma cholesteryl ester transfer protein during probucol treatment. Relation to changes in high density lipoprotein composition.
Probucol is a hypolipidemic agent that causes a marked decrease in high density lipoprotein (HDL) cholesterol. To investigate the mechanism of this effect, two studies were performed in hypercholesterolemic patients who had been stabilized previously on diet and were not receiving other lipid-lowering medication. Plasma cholesteryl ester transfer protein (CETP) concentrations were measured in f...
متن کاملGreater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl esters.
We have observed recently that high-density lipoproteins (HDL) are the predominant carriers of cholesteryl ester hydroperoxides (CEOOH), the major class of lipid hydroperoxides detectable at nanomolar concentrations in the plasma of healthy fasting humans. The present study investigates the effect of such very low levels of CEOOH in apolipoprotein E-free HDL3 on lipoprotein particle metabolism ...
متن کاملApolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 17 10 شماره
صفحات -
تاریخ انتشار 1997